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ABSTRACT

The Russian literature pertinent to the thermal (chemical) and radiolytic degradation
of anion-exchange resins has been reviewed, and some of the results are summarized.
The review covers strongly basic resins of both the conventional (divinylbenzene—
styrene) and the more recently developed pyridinium types. Thermal and radiolytic
degradation causes loss of functional groups (primarily in the conventional resins) and
induces reactions in the polymeric structure. Experimental data on gas evolution from
resin—nitric acid mixtures are presented, including results obtained from studies of
radiation effects.

Process incidents involving anion exchange encountered in the Soviet nuclear
processing industry are listed. The most serious of these, a column explosion occurring
at the Mayak plant in 1993, is described in considerable detail.

* Retired.

1183

Copyright © 1999 by Marcel Dekker, Inc. www.dekker.com,



11:12 25 January 2011

Downl oaded At:

1184 HYDER ET A}

INTRODUCTION

Synthetic ion-exchange resins have long bsen used in the Russian nuclear industry.
These resins, which are similar to those used in the West, include pyridine-based resins,
as well as the more conventional polybenzyltrimethylammonium resins. In this paper the
latter are represented by AV-17 resin, while the VP-1AP resin is an example of the

former.

The sensitivity of these amines to reaction with nitric acid and other oxidants has
been a concern in Russia as in the West, and numerous laboratory experiments have been
conducted to study the reactions involved. Several incidents involving pressure or
temperature excursions have provided incentives for such studies (see Table 1, and the
section below on the 1993 incident). This paper briefly summarizes the results obtained.
The Russian authors of this paper have provided additional details on that incident in a

recent report that has been issued as a U.S. Department of Energy document (1).

The separation of plutonium, neptunium, etc., from other materials by ion exchange
requires fairly strong nitric acid (6-8 M) (2). In some systems, such as the processing of
B3Py, intense ionizing radiation may also be present during ion-exchange separation. As
aresult, it is necessary to consider not only thermal hydrolysis and oxidation and their
effects on the resin, but also radiolysis. All of these effects were investigated in the

Russian studies.

THE 1993 INCIDENT

The most recent safety-related incident involving ion exchange occurred in the
Mayak plant, located just east of the Ural Mountains in Siberia, in July 1993. A quantity
of **Pu was being purified by anion exchange in a remote radiochemical facility.

Figure 1 shows schematically the layout of the process equipment. A water-jacketed
column, SN-04, was loaded with 374 g of **Pu and washed with 7.0 M nitric acid.
Because there was a delay in preparing the elutriant solution, the column was left for
approximately 3 h without further activity. At this time a loud noise was heard, and the
column was found to have ruptured in an explosive manner. Some of the expelled resin

was charred.
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TABLE 1
ION EXCHANGE INCIDENTS IN RUSSIAN FACILITIES

DATE, PLACE INCIDENT CAUSE
2/62, Mayak Column Explosion 7 M Nitric Acid, 55° to 60°,
‘ (Not Loaded) Relief Valve Closed
4/67, Mayak Temperature Excursion Temperature Control Cut Off
(Not Loaded)
11/67, Tomsk-7 Column Explosion 7.5 M Nitric Acid, plus Hydrogen
(Not Loaded) Peroxide & Oxalic Acid.
Relief Valve Closed
12/73, Mayak Column Rupture During Column Heated, Relief Valve
238Pu Processing Closed
7/93, Mayak Column Exploded During Column Allowed to Stand and
238Pu Processing Self-Heat While Isolated
(Inadequate Cooling)

Analysis of the incident showed that (i) the radioactive loading exceeded levels
previously used, and (ii) cooling calculations had not been made for this loading. A leak
in one of the valves in the system (No. 2728) had necessitated manual control of the
process, which allowed the column to be isolated from its relief system. The leak in the
valve was compensated for via pressurization of the line, but this action required valve
0443 to be closed. This allowed the column to heat up along its top centerline and dry
out. Once a region of the loaded column was dry, exothermic reactions caused additional
heating and pressurization of the column, which led to the explosion. Differential
thermal analysis of resin recovered from the incident showed strong exotherms, as shown
in Figure 2; these are the cause of the accelerated heating and pressurization that were

experienced in the incident.

Heat transfer calculations have been made to determine the rate of heating to boiling
and dryout in the column. They agree well with the actual observations. Combination of
the heating calculations with the results of the thermal studies showed that large amounts
of gascs would be generated, producing internal pressures in excess of 33 atm. At this

point, rupture of the column would be expected.
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Figure 1:

Equipment Layout
for the Facility 45-03

The apparatus was redesigned and rebuilt to incorporate a rupture disk and
thermocouples to detect unacceptable heating. A supply tank containing a desorbent was

also added, along with a number of automatic safety systems.

THERMAL DEGRADATION

Heating can degrade anion-exchange resin, particularly in the presence of oxidants.

The first part of Table 2 shows the effects of heating the AV-17 resin in water, in terms
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Figure 2:
DTA Scan of VP-1AP Resin
from Column SN-04

of both loss of strong base capacity and formation of methanol (3,4). Methanol is formed
by hydrolysis of the amine, leaving behind a weaker base. The second section of the
table shows the effect of heating the pyridinium resin (VP-1AP) in water under autoclave

conditions (5). This resin is more resistant to hydrolytic damage than AV-17 resin.

RADIOLYSIS

Ion-exchange resins used for radiochemical separations are generally exposed to
ionizing radiation—alpha radiation in particular. The effect of such irradiation on
organic resins has been investigated extensively and is reviewed in two articles by

Pillay (6,7). The results of some of the Soviet studies are briefly summarized here.
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TABLE 2

Thermal Degradation of Anion Exchange Resins

AV-17 in Water, 100°C
Time, Days Methanol Formed Weak Base Formed
m mol/g meq/g
10 0.11 0.08
20 0.16 0.17
30 0.31 0.29
VP-1AP in Water
T, °C Heat Time, hr Capacity, meq/g
0 3.9
230 36 3.8
200 60 23.

Particular emphasis in these studies was placed on pyridine-based resins, which tend to

be more resistant to radiation than conventional substituted benzenes.

Tablé 3 shows the effect of irradiation on exchange capacity for a conventional ion-
exchange resin, the Russian AV-17 (X6), which is similar in structure to Dowex 1 (8).
The irradiation was performed on resin in water. After receiving a dose of 3 MGy, the
resin had lost more than 75% of its capacity, primarily as the result of the loss of the

amine group.

In comparison, Table 4 shows the effect of “Co on the pyridinium resin VP-1AP,
which was irradiated in nitric acid solution (9). The loss of exchange capacity, which
tracks the loss of resin weight, is much less than the corresponding value for conventional
resins. The loss of weight apparently corresponds to loss of fragments of the resin. A

study by investigators at the Khlopin Institute followed the weight loss and characterized
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TABLE 3

LOSS OF EXCHANGE CAPACITY ON GAMMA IRRADIATION
ANION RESIN AV-17 (6% CROSSLINKED, OH™ FORM)

Dose, MGy Exchange capacity, mol/kg

4.16
2.76
2.44
1.95
0.91
0.19

8.0 0.08
15.0 0.02

PO O
como®

TABLE 4

LOSS OF EXCHANGE CAPACITY ON IRRADIATION
ANION RESIN VP-1AP IN 7 M NITRIC ACID

Dose, MGy Weight Loss, % Exchange capacity, mol/kg
0 0 3.9
2 34 3.6
4 14.8 34
6 28.0 3.1
10 35.8 2.5

the fragments (10). The rapid increase in weight loss above about 3 MGy appears to be
associated with large fragments of the polymer matrix breaking away from that matrix

(see Figure 3).

The data cited here are consistent with the following interpretations:

1. In the absence of oxidizers, radiation tends to cross-link resins; however, in
the presence of oxidizing materials, cross-links are broken and the resin

swells.

2. Radiation can introduce new functional groups, such as carboxylic acid

groups or (in the presence of nitric acid) nitrated groups, into resins.

3. Vinylpyridine anion resins, particularly those based on 2,5-
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Figure 3:

Radiolytic Decomposition of
VP-1AP Pyridinium Resin
(Ref. 10)

methylvinylpyridine, can withstand radiation doses up to 3 MGy with little
damage to functional groups or the resin structure. At higher doses,

degradation of the polymer structure causes a loss of material and capacity.

SAFETY CONSIDERATIONS

Safety concerns in ion exchange are dominated by the release of gases from
degraded resins. When caused by an accelerating chemical reaction, such releases can
lead to the explosive rupture of equipment. Reaction rates are fastest in resin that has
dried.

Gas evolution in VP-1AP resin that has been heated and contacted with nitric acid is
shown in Figures 4 and 5. The gas evolution rate is observed to increase with both
temperature and acidity. It is noted that these rates in unirradiated resin do not represent
an explosive hazard in an open system, even at temperatures up to the boiling point when
in contact with 12 M nitric acid. In addition, under the conditions normally used for
separations (temperature below 75°C, nitric acid concentrations below 8.0 M), the

solutions are stable and gas evolution rates are low.
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(Ref. 11)
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Figure 5:

Evolution of Gas from
VP-1AP Pyridinium Resin
Heated in 12 M Nitric Acid
(Ref. 11)
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CONDITIONS:
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Figure 6: )
Gas Evolution in Heated VP-1AP Resin

Following y-Irradiation
(Ref. 11)

I A
25

2
1.5

1
0.5

o

Y

90 100 110 120 130
Temperature, °C

Figure 7:

Maximum Rate of Gas Evolution
On Heating In Closed Vessels
Unirradiated VP-1AP Resin,
Nitrate form in 12 M HNOg

(Ref. 11)
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The effect of ionizing radiation on thermally induced gas evolution is illustrated in
Figure 6, which shows substantial increases in gas evolution for irradiations in the MGy
range. Both the gas evolution rate and the total volume of gases involved increase

severalfold.

In a closed apparatus, the attainable temperatures are higher and the rate of gas
evolution from unirradiated resin increases accordingly (see Figure 7). In combination
with radiation effects, very high evolution rates can be observed. Because these reactions
are also exothermic, they can self-accelerate in a closed system. In such systems, heat is

not removed by evaporating steam.

Because of the concern for self-accelerating reactions in closed systems, an
investigation of explosiveness was undertaken (11). The experiments were performed in
a bomb apparatus using a high-explosive detonator. The results showed that nitrated

resin containing >8 M nitric acid could be detonated in the absence of an aqueous phase.
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